Alte Brücke in Heidelberg beim Halbmarathon 2018

Es ist wieder soweit: Die Anmeldung zum Heidelberger Halbmarathon ist geöffnet. rAAAreware ist hier vor einigen Jahren schon als Sponsor für ein Laufteam aufgetreten. Dieses Jahr ist es nun wieder so weit: Wir sponsoren ein kleines Laufteam um unsere Firma auch im lokalen Umfeld etwas bekannter zu machen. Nach den Slogans „Unsere Software läuft schneller“ des BitBumper Ing.Büro Keil und dem „schneller zum Höhepunkt“ unseres trAAAde Produkes arbeiten wir noch an einem passenden Shirt für das aktuelle Jahr 2025. Vorschläge nehmen wir gerne an. Wir freuen uns auf einen schönen Lauf am 27. April 2025 auf der malerischen Heidelberger Laufstrecke.

Unsere MQTT/WebSockets Funkmodule sind beliebt um Messmittel an eine IIoT Infrastruktur anzubinden.

Vor allem bei Messeinrichtungen mit Messuhren ergibt sich oft die Situation, dass eine Messuhr nicht als einzelne Messvorrichtung sondern in einem Verbund mit anderen Messuhren in einer Prüfvorrichtung verbaut ist. Normalerweise ist hier dann für jede Messuhr eine eigenes Funkmodul erforderlich.

Das Auslösen einer Messung kann hier nur schwer zeitgleich durchgeführt werden, das der MQTT Broker oder WebSocket Client die Messmittel nacheinander anfragen muss.

Um dieses Problem zu lösen haben wir einen MQTT Multiplexer entwickelt. An diesen lassen sich bis zu 5 Messuhren anschliessen welche dann einzeln oder auch gemeinsam abgefragt werden können. Vor allem besteht die Möglichkeit eine Messung wirklich zeitgleich auszulösen. Dadurch können Messungen in dynamischen Situationen oder bei zeitkritischen Messaufgaben gleichzeitig erfasst werden.

Neben der Verbesserung der Messqualität bieten sich weitere Vorteile des Multiplexers gegenüber einzelnen Sendemodulen:

  • Einfacher Messaufbau mit geringerem Hardwareeinsatz.
  • Kostenreduktion durch nur einen Multiplexer anstatt z.B. 5 Funkmodule.

Der Multiplexer kann im MQTT oder WebSocket Modus betrieben werden. Das MQTT Protokoll erlaubt den einfachen Einsatz in einer MQTT IIoT Infrastruktur. Der WebSocket Modus erlaubt eine unkomplizierte Anbindung in lokalen Web-Anwendungen.

Das integrierte OLED Display informiert über den aktuellen Status des Messmoduls und die bestehende Funkverbindung zum WLAN Netzwerk und MQTT Broker.

MQTT Multiplexer für bis zu 5 Digimatic Kanäle (Messuhren,…)

Unsere WLAN Funkmodule für Messmittel sind hervorragend geeignet, um ein IIoT Infrastruktur für Messmittel aufzubauen. Es gibt jedoch auch Situationen in welchen nur eine einfache, zunächst lokale Übernahme der Messwerte, z.B. auf ein Smartphone, hinreichend ist. Das Smartphone wird somit zur einfachen Fernanzeige für eine Messuhr oder ein anderes Messmittel.

Für diesen Anwendungsfall haben wir die Mobile Anwendung „smart measure display“ entwickelt.

Das Smartphone scannt zur Kopplung der Funkverbindung das Messgerät (Messuhr)
Das Smartphone scannt zur Kopplung der Funkverbindung die Messuhr mit montiertem Funkmodul und aufgedrucktem Barcode
Nach erfolgreicher Kopplung werden die Messwerte auf dem Smartphone angezeigt.
Nach erfolgreicher Kopplung werden die Messwerte direkt auf dem Smartphone angezeigt.

Ohne besondere Konfiguration wird das Messmittel einfach mit dem Smartphone gescannt. Daraufhin wird eine Funkverbindung zwischen dem Smartphone und dem Messgerät hergestellt und der Messwert kann direkt auf dem Smartphone abgelesen und gespeichert werden.

Als Zusatzfunktionen sind implementiert:

  • Überwachung von Bereichsgrenzen und Grenzwerten
  • Automatische, programmierbare Intervallmessung
  • Ferngesteuerte Messauslösung
  • Speichern der Messwerte in einer lokalen Datenbank
  • Weitergabe der Messwerte an ein Backend (SQL, MQTT-Broker, Q-DAS)

Die Anwendung kann kostenfrei (kostenlos) verwendet werden („freeware“) und funktioniert mit unseren beliebten Funkmodulen der Reihe M4 und M8.

Technische Details

Unsere Funkmodule beherrschen verschiedene Protokolle zur Messwertkopplung.

Als professionelles Kopplungsverfahren setzen wir bevorzugt das MQTT Protokoll ein. Dieses IoT Protokoll hat den Vorteil der relativ einfachen Konfigurierbarkeit, verbunden mit der Möglichkeit, eine gesamte Messinfrastruktur aufzubauen. So können z.B. ein Smartphone und gleichzeitig eine Prozesssoftware auf das Messmittel zugreifen um Messwerte abzurufen oder eine Messung auszulösen. Als Nachteil erweist sich, dass diese Infrastruktur vorhanden sein muss. Für eine einfache Messanzeige eines Messwertes auf einem Smartphone kann dies schon überdimensioniert sein.
Daher unterstützen unsere Module der Reihe M8 auch einfache WebSockets als Übertragungsprotokoll. Hierüber kann über eine sehr einfaches Protokoll einfach der Messwert eines Messmittels abgefragt werden.
Die Kopplung erfolgt denkbar einfach:
Ist nur ein Messmittel in der Reichweite des Smartphones wird dieses Messmittel direkt gekoppelt und abgefragt.
Sind mehrere Messmittel vorhanden kann das Messmittel entweder
– manuell durch eine Auswahl am Bildschirm
– durch den Scan eines QR-Codes
gekoppelt werden.

Das im Text verwendete Wort "Q-DAS" ist ein eingetragenes Warenzeichen der Q-DAS GmbH, Eisleber Straße 2, 69469 Weinheim, Germany

Mit unserer Software „Datenlogger“ können Messwerte beliebig vieler Messsysteme aufgezeichnet und weiterverarbeitet werden. Die Ankopplung der Messwerte erfolgt über unsere WLAN Messmodule über das drahtlose MQTT Protokoll. Die Software ist geeignet zur Aufzeichnung von Langzeitverläufen von Messwerten, wie sie z.B. von einer Funk-Messuhr übertragen werden. Die Messuhren oder andere Messmittel verfügen über eine Digimatic Datenschnittstelle. Über diese Schnittstelle werden unsere Funkmodule angeschlossen und übertragen die Messwerte kabellos zum MQTT Broker. Die Messsoftware erhält diese Daten vom Datenbroker zur Aufzeichnung, Darstellung und Archivierung. Der Messverlauf kann tabellarisch oder grafisch dargestellt werden. Zu jedem Messwert wird der Zeitstempel der Messung mit erfasst. Somit sind vergleichende Messungen vieler Datenquellen möglich. Über zusätzliche Aufzeichnungskanäle lassen sich weitere Messgrößen erfassen. Z.B. werden bei Langzeitmessungen oft Klimadaten wie Temperatur und Luftfeuchte mit aufgezeichnet.

Die Messkanäle können verschiedenen Datenkanälen zugeordnet werden. Möglich ist die direkte Anzeige durch das Programm, die Speicherung in einer SQLite Datenbank, die Speicherung in einer Textdatei (.CSV) oder das direkte Übertragen in die Tabellenkalkulation Excel. Es können mehrere Kanäle gleichzeitig aktiviert werden.

Kontaktieren Sie uns um weitere Informationen zu unserer Messsoftware zu erhalten.

Die Mitotoyo Innenmikrometer besitzen eine Digimatic Schnittstelle zur digitalen Übertragung der Messwerte. Es werden von Mitutoyo und Mitbewerbern Module angeboten, welche diese Schnittstelle verwenden um die Messwerte an ein nachgelagertes System zu übertragen. Die Übertragung erfolgt entweder über ein Kabel oder über ein Funkmodul, welches jedoch auch über ein Kabel angeschlossen ist.

Unser Funkmodul wird direkt am Innenmikrometer angebracht. Dadurch ist eine sehr komfortable Handhabung des Messgerätes möglich, ohne auf ein störendes Kabel Rücksicht zu nehmen.

Als weiteres Alleinstellungsmerkmal senden unsere Funkmodule direkt in das WLAN Netzwerk im Unternehmen. Die Funkleistung ist deutlich höher und damit zuverlässiger als eine Punkt-zu-Punkt Funkverbindung zu einem einzelnen Empfänger wie dies z.B. mit Bluetooth möglich und üblich ist.

Mitutoyo Innenmikrometer mit montiertem M4IMM Funkmodul

Funkmodul zur Montage auf einem Mitutoyo Innenmikrometer zur Funkübertragung von Messwerten über das MQTT Protokoll. Das Funkmodul kann mit unseren Standard M4 Akkus mit Strom versorgt werden. Für die eingesetzten Messmittel ist somit nur ein einzelnen Akkusystem notwendig welche an einer zentralen Ladestation geladen und bereitgestellt werden.

WLAN Funkmodul für das Mitutoyo Innenmikrometer

Unser WLAN Funkmodul für Messuhren und andere Handmessmittel wie Bügelmessschraube oder Messschieber kann mit dem Funkmodul M8 für Verbindungen über WebSockets verwendet werden. Meist werden unsere Datenübertragungsmodule im MQTT Modus eingesetzt. Es gibt jedoch Anwendungsfälle, in denen eine Verbindung über Websockets zweckmäßiger ist. Z.B. wenn aus einer Web-Anwendung oder einem Web-Browser heraus direkt auf ein einzelnes Messgerät zugegriffen werden soll.

Dieses Praxisbeispiel soll zeigen, wie eine WebSocket-Verbindung zum Messgerät hergestellt werden kann.

Das Beispiel besteht aus einer einfachen Webseite / Webanwendung in HTML und Javascript. Über diese einfachen Techniken ist es möglich, direkt auf das Funkmodul zuzugreifen und den aktuellen Messwert sowie Statusinformationen aus der Funk-Messuhr auszulesen. Dies ist im Vergleich zu MQTT ohne zusätzliche Infrastruktur eines Brokers möglich und somit vor allem für kleine, lokale Anwendungen eventuell einfacher umzusetzen als eine MQTT Abfrage.

Web-Oberfläche der Beispielanwendung

Der Quelltext der einfachen Anwendung:

<!DOCTYPE HTML>
<html>
<head>
  <meta name="websocket_test">
  <meta charset="UTF-8"/>
  <style>button{width:140px;height:50px}body{background: #f48f0d;}</style>
  <style>table, th, td { border-collapse: collapse;}</style>
<title>websocket to iot test</title>
</head>
<body style="font-family: arial, sans-serif;">
    <div style="width:500px;border:1px solid black;align:left">
        <form onsubmit="return false">
            Client name (informal): <input type="text" id="txtName" value="Client_1"><br>
            Server: <input type="text" id="txtServer" value="192.168.1.119">
        </form>
        <form onsubmit="return false">
            <button type="submit" id="btnConnect">Connect to IoT device</button>
            <input type="checkbox" id="cbxSsl" name="ssl" checked>
            <label for="cbxSsl">SSL</label>
            <input type="checkbox" id="cbxRaw" name="raw" checked>
            <label for="cbxRaw">Raw</label>
        </form>
        <form onsubmit="return false">
            <button type="submit" id="btnConfigSet" disabled>Set configuration</button>
        </form>
        <form onsubmit="return false">
        <table>
        <tr><td>
            <button type="submit" id="btnRequestMeas" disabled>Request measurements</button>
            </td><td>
            Repeat count:<input style="width:80px;" size="3" type="number" id="txtRepCnt" value="3"><br>
            Interval:<input style="width:80px;" size="6" type="number" id="txtRepMs" value="200">
            </td>
        </tr></table>
        </form>
        <form onsubmit="return false">
            <button type="submit" id="btnRequestMeta" disabled>Request device info</button>
        </form>
        <!-- output form -->
        <form onsubmit="return false">
            <div style="overflow:scroll;height:400px;word-break:break-all" id="divOut">Not connected...</div>
        </form>
        <!-- clear -->
        <form onsubmit="return false">
            <button type="submit" id="btnClear">Clear</button>
        </form>
    </div>
    <script type="text/javascript">
        const elem = id => document.getElementById(id);
        const txtName = elem("txtName");
        const txtServer = elem("txtServer");
        const txtRepCnt = elem("txtRepCnt");
        const txtRepMs = elem("txtRepMs");
        const btnConnect = elem("btnConnect");
        const cbxSsl = elem("cbxSsl");
        const cbxRaw = elem("cbxRaw");
        const btnConfigSet = elem("btnConfigSet");
        const btnRequestMeas = elem("btnRequestMeas");
        const btnRequestMeta = elem("btnRequestMeta");
        const btnClear = elem("btnClear");
        const divOut = elem("divOut");

        class Mdevice {
            constructor() {
                this.connecting = false;
                this.connected = false;
                this.name = "";
                this.ws = null;
            }
            connect() {
                if (this.ws === null) {
                    this.connecting = true;
                    txtName.disabled = true;
                    this.name = txtName.value;
                    btnConnect.innerHTML = "Connecting...<br>"+txtServer.value+"<br>ssl "+
                      cbxSsl.value+": "+(cbxSsl.checked?"on":"off");
                    this.ws = new WebSocket("ws"+(cbxSsl.checked?"s":"")+"://"+txtServer.value+"/"+(cbxRaw.checked?"raw1":"dev1"));
//                    this.ws = new WebSocket("wss://192.168.1.119/dev1");
                    this.ws.onopen = e => {
                        this.connecting = false;
                        this.connected = true;
                        divOut.innerHTML += "<br><p>Connected.</p>";
                        btnConnect.innerHTML = "Disconnect";
                        btnConfigSet.disabled=false;
                        btnRequestMeas.disabled=false;
                        btnRequestMeta.disabled=false;
                        // optional: send something through the websocket 
                        // this.ws.send(this.name + " connected!");
                    };
                    this.ws.onmessage = e => {
                        divOut.innerHTML+="<p>"+e.data+"</p>";
                        divOut.scrollTo(0,divOut.scrollHeight);
                    }
                    this.ws.onclose = e => {
                        this.disconnect();
                    }
                }
            }
            disconnect() {
                if (this.ws !== null) {
                    // optional: send something through the websocket 
                    // this.ws.send(this.name + " disconnect!");
                    this.ws.close();
                    this.ws = null;
                }
                if (this.connected) {
                    this.connected = false;
                    btnConfigSet.disabled=true;
                    btnRequestMeas.disabled=true;
                    btnRequestMeta.disabled=true;
                    txtName.disabled = false;
                    divOut.innerHTML+="<p>Disconnected.</p>";
                    btnConnect.innerHTML = "Connect";
                }
            }
            sendMessage(msg) {
                if (this.ws !== null) {
                    this.ws.send(msg);
                }
            }
        };
        let mdevice = new Mdevice();
        btnClear.onclick = () => {
            divOut.innerHTML ="";
        }
        btnConnect.onclick = () => {
            if (mdevice.connected) {
                mdevice.disconnect();
            } else if (!mdevice.connected && !mdevice.connecting) {
                mdevice.connect();
            }
        }
        btnConfigSet.onclick = () => {
            mdevice.sendMessage("{\"cmd\":\"config\",\"sleep_sec\":13698,\"display_text\":\"MESSAGE\"}");
            divOut.focus();
        }
        btnRequestMeas.onclick = () => {
            if (cbxRaw.checked) {
               mdevice.sendMessage("meas"); // -- opt: csv instead json
            } else {
              mdevice.sendMessage("{\"client\":\""+this.name+"\",\"cmd\":\"meas\",\"rep_cnt\":"+
                txtRepCnt.value+",\"rep_ms\":"+txtRepMs.value+"}");
            }
            divOut.focus();
        }
        btnRequestMeta.onclick = () => {
            // mdevice.sendMessage("1|info|*");
            mdevice.sendMessage("{\"client\":\""+this.name+"\",\"cmd\":\"info\"}");
            divOut.focus();
        }
    </script>
</body>
</html>

Der Quellcode dieses Programmbeispiels kann hier heruntergeladen werden. Dieser Quelltext kann gerne frei verwendet werden (Freeware, OpenSource, Public domain) – allerdings übernehmen wir keine Haftung für die Fehlerfreiheit des Quellcodes oder der Software.

Wir mussten schon erfahren, dass unsere IoT Funkmodule von Interessenten begeistert begutachtet werden – dann aber im Unternehmen nicht eingesetzt werden dürfen, da die lokale IT nur (noch) WLAN mit 5GHz (IEEE 802.11ac) zulässt.

Dies ist ein K.O. Kriterium nicht nur für unsere Module, sondern für die gesamte Digitalisierung im Unternehmen. Entsprechend ist es eine falsche Entscheidung.
Denn: Entweder es wird ein WLAN im 2.4 GHz Bereich betrieben oder es wird nichts mit Industrie 4.0 und IIoT.

Warum diese drastische Einschätzung?

Ganz einfach: Es gibt aktuell noch keine integrierte MCU / SoC mit WLAN auf dem Markt welche 5GHz bedienen kann (Stand August 2021).

Es gibt einige reine Funkmodule mit 5GHz, diese benötigen jedoch eine externe CPU um angesteuert zu werden.
Diese Module sind als Funkmodule in Notebooks und Smartphones vorgesehen, nicht jedoch für den Einbau in kleinste Sensoren für die Messtechnik.
Für einen Betrieb als per Akku betriebene IoT Device sind diese Module nicht nur nicht geeignet sondern praktisch einfach nicht möglich.

Nun könnte man sagen, dass die Hersteller von Modulen vielleicht ja die nächsten Jahre ein 5GHz IoT Modul auf den Markt bringen.
Dies könnte sein. Eventuell werden in einem Zeitraum von 2-5 Jahren sogar mehrere solcher Module erscheinen.
Dies eröffnet das nächste Problem: Soll man gleich auf das erste Modul setzen? Oder kommt in einem halben Jahr vielleicht ein viel besseres?
Und wenn ein besseres kommt: Wie schnell wird das Alte abgekündigt?
Und kommen dann vielleicht die ersten OFDM 5G Module?
Wir haben nun ein „Frosch im heissen Wasser“ Problem.
Es wird nicht möglich sein, den richtigen Moment zum Springen zu finden.
Selbst wenn dann das nächste „perfekte“ Funk-Modul auf den Markt kommt wird es einige Jahre dauern bis die wichtigsten Softwarebibliotheken auf dieses Modul portiert sind und stabil funktionieren. Das Warten auf die 5GHz Technik im IoT Bereich bedeutet also auf jeden Fall ein langes Warten. Dieses Warten ist dabei noch von vielen Unsicherheitsfaktoren umgeben. Es geht bei der Digitalisierung in der Fertigung nicht darum zu warten bis das perfekte System zu 100% verfügbar ist. Es geht viel mehr darum, zu beginnen. Diese Dinge zu digitalisieren die den größten Nutzen in Bezug auf Qualität und Effizienz bieten. In diesem Prozess ist der einzige richtige Moment „jetzt“. Mit den maximalen Möglichkeiten die der Markt zum Zeitpunkt „jetzt“ bietet. In der Form, dass der Prozess gestartet und stetig optimiert und fortgeführt wird.

Ein weiterer Aspekt ist die Sicherheit der Module.
Die kleinen IoT Devices unterstützen „nur“ WPA2/PSK als Basis-Authentifizierung.
Ein aktives Zertifikatshandling kann keines der bekannten MCU Devices.
Auch auf diesem Gebiet muss die Unternehmens-IT also umdenken:
Für die IoT Devices muss eine geeignete Infrastruktur bereitgestellt werden, wenn der Weg in die Digitalisierung in den nächsten Jahren gemeistert werden soll.

Zusammenfassend kann man also sagen:

  • Entweder Papier und ablesen (Stand 19. Jahrhundert),
  • Kabel- oder Bluetooth-Lösung (Stand 20. Jahrhundert und nicht besonders praktikabel),
  • oder eben WLAN mit 2.4GHz Funktechnik (Stand heute).

Die 2.4 GHz Technik ist etabliert, jeder vernünftige Router kann neben 5 GHz auch noch 2.4 GHz.
Hier ein eigenes IoT-WLAN mit einem entsprechenden Gateway zu betreiben kann kein wirkliches Problem darstellen. Im Gegenteil: Ein reines 2.4 GHz WLAN für Messtechnik und Prozesstechnik und ein separates WLAN für Office, ERP und MES sollte in Bezug auf Eigenständigkeit und Übersichtlichkeit eher ein Vorteil darstellen.

Die 2.4GHz Funktechnik wird noch viele Jahre bestehen und ermöglicht Industrie 4.0 jetzt.
Die Alternative bedeutet bestimmt 5-10 Jahre warten – und sich nicht sicher sein, was dann eben kommt.
Diese Zeit hat kein Unternehmen.

Eine geeignetes Sicherheitskonzept für das Netzwerkes mit seinen Teilnehmern bereitzustellen ist eine Herausforderung. Diese Herausforderung kann aber geleistet werden und ist unabhängig von der verwendeten Sendefrequenz der Module.

Aktuell ist es schlicht die Aufgabe der Unternehmens-IT für IIoT mindestens ein 2.4 GHz WLAN Netzwerk mit einfacher WPA2/PSK bereitzustellen.

Sobald ein Bauteil verfügbar ist welches die geforderte Leistung bei 5 GHz bereitstellt werden wir unsere Module natürlich auch gerne auf dieser Technik anpassen und liefern.

Anhang:

Marktübersicht vorhandener WIFI Module:

  • texas instruments (ti) mit CC3200
  • microchip mit SAMW25
  • espressiv mit ESP32/ESP8266

Alle diese Module arbeiten ausschließlich mit 2.4GHz. Viel mehr gibt es leider nicht.
Auch OEM Module wie z.B. das „Würth Calypso WIFI module“ haben einen der oben genannten Chips verbaut.

Unsere Messablauf Software Newim dient zur Verwaltung von Prüfplänen und zum Abarbeiten von Messabläufen in einer Industrie 4.0 Infrastruktur. Die Messmittel können über Module angebunden werden. Werte noch nicht digitalisierter Messmittel können als Handeingabe hinzugefügt werden.

Die Software richtet sich an professionelle Benutzer.

Features

  • Skalierbare Mehrbenutzer Anwendung in einer Client-/Server Architektur.
  • Serverseitige Cloud-Option.
  • MQTT Client zur Ankopplung an MQTT fähige Messgeräte.
  • REST Client zur Automatisierung über ein MES System.
  • Datenhaltung in einer SQL Datenbank.
  • Rich Client auf Windows Betriebssystem.
  • Prüfplanverwaltung mit Import-/Export zu QStat/QDas.
  • Visuelle Prüfablaufmodellierung.
  • Werkerführung zur Prüfplan-Abarbeitung.
  • Stammdatenverwaltung aller relevanter Stammdaten.
  • Schnittstelle zu SAP Stücklisten.
  • Internationalisierte Oberfläche für unterschiedliche Landessprachen und Zahlenformaten.
  • Optionale Versionierung von Prüfplänen.
Beispiel einer visuellen Modellierung eines Prüfablaufs

Die Software mqtt2file ist die Basissoftware zum Betrieb unserer Funkmodule.

Die Software soll 2 Aufgaben erfüllen:

  • Das MQTT Funkmodul bei der ersten Inbetriebnahme zu konfigurieren.
  • Messwerte welche über das WLAN Funkmodul gesendet wurden anzuzeigen und bei Bedarf in eine Datei zu schreiben.

Diese beiden Aufgaben decken den Mindestbedarf an Software ab, um mit einem MQTT Modul zu arbeiten.

Die beiden Aufgaben sind prinzipiell unabhängig. Da MQTT Funkmodule oft in einer übergeordneten und externen MQTT Infrastruktur betrieben werden, wird die Software häufig nur dazu verwendet um die MQTT Module zu konfigurieren und Tests für den Datenempfang mit den Modulen durchzuführen.

Die Software ist kostenlos und lauffähig unter MS Windows und Android. Das Installationspaket bzw. die ausführbare Datei kann auf unserer Service/Downloadseite heruntergeladen werden.

Nach dem Start der Sofware wird die Hauptauswahl zur Konfiguration angezeigt.

Wenn beim Start der Anwendung bereits eine gültige Konfiguration gefunden wird, wird nach einer kurzen Pause direkt in den Mess-Modus geschaltet. Ist noch kein Modul konfiguriert bleibt der Startbildschirm stehen. Die einzelnen Menüpunkt zeigen durch einen grünen Haken dass dieser Punkt bereits konfiguriert und betriebsbereit ist.

Durch Klick auf ein Menüpunkt wird dieser Bereich geöffnet und die darunter enthaltenen Einstellungspunkte werden sichtbar.

Der Menüpunkt „MQTT“

Im Menüpunkt MQTT kann die Verbindung zu einem MQTT Broker eingestellt werden. MQTT kommuniziert über das Internet. Entsprechend wird unter „Server“ die IP Adresse des MQTT Servers eingetragen. Der verwendete Port ist normalerweise 1883. Optional können zur Absicherung der Verbindung die im MQTT Broker vergebenen Zugangsdaten (Benutzername und Passwort) eingegeben werden. In optionalen Firmware-Varianten ist eine zusätzliche Absicherung durch SSL möglich.

Basis Topic definiert den Basis-MQTT-Topic welcher für die Erfassung von Messwerten verwendet wird. Dies ist normalerweise der Topic einer zuvor konfigurierten Messuhr oder anderen IoT-Device.

Der Abschnitt „Messuhr Einrichten“

Eine fabrikneue Messuhr oder anderes MQTT-Funkmodul muss vor der ersten Verwendung dahingehend konfiguriert werden, dass es sich mit einem vorhandenen WLAN Netzwerk und einem vorhandenen MQTT Broker verbinden kann.

Ist diese Verbindung einmal hergestellt, kann jeder Client in dieser MQTT Infrastruktur – auch gleichzeitig – auf die Ergebnisse und Messwerte des Messgerätes zugreifen.

Ebenso über MQTT werden Konfigurationsparameter wie Standby-Zeit oder die Warnmeldung bei niedrigem Batteriestand eingestellt.

Das Handbuch zum Betrieb und zur Konfiguration der MQTT Funkmodule kann hier als PDF Datei heruntergeladen werden.

Problemlösungen

Android: WLAN Verbindung mit dem Modul kann nicht hergestellt werden

Problem: Ein rAAAreware MQTT Modul soll mit dem Programm mqtt2file neu konfiguriert werden. Das Modul wurde bereits in den Konfigurationsmodus versetzt und öffnet nach dem Einschalten einen Access-Point.
Im Programm mqtt2file erscheint die SSID des Netzwerkes nicht in der Liste der erkannten zu konfigurierenden Devices. In der Statusleiste des Smartphones erscheint eine Meldung „Android-System:“ „In WLAN-Netzwerk anmelden“, gefolgt von der SSID der Device zu der verbunden werden soll.

Situation: Das Android Betriebssystem ist schon mit dem WLAN Netzwerk des IoT Device verbunden, jedoch kann das Programm mqtt2file das verbundene Netzwerk nicht abrufen. Damit das Programm die Netzwerke abrufen kann müssen dem Programm die notwendigen Rechte gegeben werden.

Lösung: Gehen Sie im Android System zu „Einstellungen“ > „Apps“ > „mqtt2file“ > „Berechtigungen“. Die vom System gewährten und verweigerten Funktionen werden in einer Liste angezeigt. Erscheinen in der Liste „Zugriff abgelehnt“ Einträge: Tippen Sie auf diese Einträge und wählen Sie für den Eintrag „Immer zulassen“.

Starten Sie das Programm mqtt2file neu. Das verbundene Netzwerk sollte nun in der Konfiguration angezeigt werden, so dass die neue Konfiguration zur Device gesendet werden kann.

Android Installation

Detailinformationen zur Installation auf Android Systemen finden Sie hier.

Übersicht unserer Displays und Anzeigen für das Messtechnik- und Prozessumfeld.

Display 280

Unser zweites Display besitzt mit 71mm (2,8″) Diagonale einen deutlich höheren Anzeigebereich. Das Farbdisplay ist in TFT Technologie hergestellt. Die Lesbarkeit wird durch eine Hintergrundbeleuchtung optimiert. Das Display kann als externe Anzeige (Fernanzeige) für Messmittel wie z.B. eine Messuhr verwendet werden. Die Anbindung des externen Displays an das Messgerät erfolgt hierbei wahlweise über ein Kabel oder über Funk. Bei einer Funkverbindung zum Messmittel kann das Display optional einen eigenen WLAN Accesspoint bereitstellen oder sich mit einem vorhandenen WLAN verbinden. Die Messwertübertragung erfolgt über TCP/IP entweder im WebSockets oder MQTT Protokoll.

Unsere Standard-Firmware deckt bereits viele Anwendungsfälle ab. So können z.B. Messwerte von bis zu 4 Messuhren direkt auf dem Display dargestellt werden. Weitere Anwendungen lassen sich über individuelle Programmierung umsetzen. Weiter Infos finden Sie unter den folgenden Links:

Technische Details
Gehe zum Shop

„smart measure display“ – Messwertanzeige auf Android Gerät

Als alternative Anzeigemöglichkeit kann der Messwert des Handmessmittels direkt auf ein Android Smartphone oder Tablet übertragen und angezeigt werden.
Als maximal einfache Variante zur Anzeige von Messwerten auf einer externen Anzeige stellen wir unsere Software „smart measure display“ kostenlos zur Verfügung.
Die Konfiguration erfolgt maximal einfach: Das Messmittel wird mit der Kamera des Smartphones gescannt, daraufhin wird der Messwert zyklisch auf der Anzeige dargestellt – solange bis ein anderes Gerät gescannt wird.


M4 Display Modul

Servicedisplay für Module mit der rAAAreware Universal-Schnittstelle

Neben den universellen Modulen für eigene Projekte kann unser Displaymodul für die rAAAreware Universalschnittstelle direkt an allen unseren Geräten mit dem 10pooligen Stecker angeschlossen werden. Das Display zeigt Statusinformationen zum IoT Device an und unterstützt den Anwender bei der Konfiguration der Device.


Mini-Display 096

Das kleinste unserer Displays besitzt eine 24mm (0,96″) Bildschirmdiagonale und ist damit für Anwendungen geeignet in denen auf kleinstem Raum Informationen und Daten angezeigt werden sollen. Als Messwertanzeige ist genügend Platz um 1 – 6 Zeilen von Messwerten anzuzeigen. Das Display leuchtet als OLED Display besonders hell und ist auch unter schwierigen Bedingungen sehr gut lesbar.