Mitutoyo Messschieber und Bügelmessschrauben besitzen mit der Digimatic-Schnittstelle eine einfache Möglichkeit die gemessenen Daten digital weiter zu verarbeiten. An das Digimatic-Interface lassen sich über ein Kabel die Daten auslesen und z.B. an einen PC oder Prozessrechner übertragen. Auch unsere WLAN-Funkmodule für Mitutoyo Messgeräte werden über die Digimatic-Steckbuchse an den Messschieber oder die Messuhr angeschlossen. In diesem Artikel soll es um die neuen und besonderen Digimatic-Buchsen der Handmessmittel gehen welche eine höhere Schutzart (IP67) besitzen und hierbei einen besonderen Anschluss für das Digimatic-Kabel besitzen.

Die normale, klassische Digimatic-Schnittstelle besteht meist einfach aus 5 Kontaktflächen auf der Elektronik-Platine des Messmittels. Der Stecker mit seinen Goldkontaktflächen stellt dann die elektrische Verbindung zur Schnittstelle her.

caliper-digimatic-view
Blick auf die klassische Digimatic-Schnittstelle an einem Mitutoyo Messschieber

Etwas anders sieht es beim Digimatic-Anschluss für Handmessmittel mit IP67 Schutzart aus. Auf den ersten Blick sieht es ganz so aus, als ob es schlicht überhaupt keine Kontaktflächen oder nur eine einzige Kontaktfläche gibt. Der Stecker – welcher sich auch vom normalen Digimatic-Stecker unterscheidet – weist dagegen auch 5 Kontaktflächen an der Stirnseite auf.

Blick auf die Digimatic Schnittstelle mit Schutzart IP67
Blick auf die Digimatic Schnittstelle mit Schutzart IP67
Digimatic Schnittstelle in Schutzart IP67 an einer Mitutoyo Bügelmessschraube
Digimatic Schnittstelle in Schutzart IP67 an einer Mitutoyo Bügelmessschraube

Aufschluss über die Funktionsweise der Steckverbindung gibt die Analyse der Kontaktfläche unter einem Mikroskop: Die vermeintlich durchgängige Kontaktfläche besteht aus sehr vielen sehr dünnen Drahtbahnen.
Die einzelnen Drähte haben hierbei eine Stärke von ca. 0,05 mm.

Digimatic Kontaktfläche in großer Vergrößerung
Digimatic Kontaktfläche in großer Vergrößerung

Diese dünnen Drahtbahnen stellen die Verbindung zu dem Digimatic-Stecker her. Hierbeit wird keine 1:1 Verbindung hergestellt sondern der Stecker trifft auf einige Gegenkontakte. Diese geben das elektrische Signal dann an die Mitutoyo Platine weiter.

Die Digimatic-Stecker im Vergleich. Links der Standardstecker. Rechts der Stecker für Digimatic-IP67

Auch die Stecker für die IP67 Schutzart-Variante unterscheiden sich. Der Standardstecker hat seine Kontaktfläche oben. Die IP67 Variante hat eine durchgängige Kontaktfläche. Verwendet zur Kontaktherstellung wird jedoch nur die Vorderseite/Stirnseite des Steckers. Diese Fläche liegt auf dem Kontaktpad auf. Zusätzlich wird der Stecker mit hoher Schutzart verschraubt. Dies ist auch notwendig damit der Stecker fest auf die Dichtung drückt. Die Buchse selbst besitzt keine hohe Schutzart.

mitutoyo-buegelmessschraube-offen
Geöffnete Mitutoyo Bügelmessschraube

Ein vollständiges Bild der Situation vermittelt eine Messuhr mit geöffnetem Deckel. Das Goldkontakt-Element wird einfach in die Aussparung der Kunststoffbuchse geschoben und stellt dann eine Brücke zwischen dem Digimatic-Stecker auf der einen und der Platine auf der anderen Seite her. Beim Einstecken wird das Kontaktpad etwas zusammengedrückt – so dass es hoffentlich einen guten Kontakt zwischen Stecker auf der einen Seite und der Platine auf der anderen Seite herstellt.

Mitutoyo wird sich bei dieser Konstruktion etwas gedacht haben. Nur: Wir wissen nicht was. Die Schutzklasse wird lediglich durch die Gummidichtung ganz außen hergestellt (auf dem Bild ganz oben gut zu sehen, auf dem Bild mit der geöffneten Messschraube entfernt). Anstatt einem Kontaktübergang haben wir es nun mit 2 Kontaktübergängen zu tun. Weiter sind die Abstände zwischen den Kontaktbahnen sehr klein (ca. 50μm): Kleinste Fremdkörper wie metallische Späne oder auch Flüssigkeiten würden die Kontaktfähigkeit mit hoher Wahrscheinlichkeit beeinträchtigen oder eine Brücke zwischen 2 Signalleitungen herstellen. Insgesamt halten wir diese Konstruktion also – milde gesagt – für sehr gewagt. Vielleicht ist sie einfach nur preisgünstig umzusetzen.

Als Alternative bieten wir daher an die Datenkabel unsere Funkmodule fest mit der Bügelmessschraube zu verbinden: Das Kontaktpad kann einfach entnommen werden, dafür wird das Kabel direkt vom WLAN-Funkmodul durch die Kunststoffdurchführung gelegt und fest mit der Platine der Bügelmessschraube verlötet. Eine Verbindung die zuverlässig über Jahre hält und dauerhaft stabile Messergebnisse liefert.

Aufgabenstellung

Eine klassische Messvorrichtung soll die gemessenen Daten per Funk an ein verarbeitendes System übertragen. Die Vorrichtung wurde durch den Vorrichtungsbau bereits erstellt und ist bereits mit präzisen Mitutoyo Messuhren ausgestattet. Die Prüfvorrichtung soll Mobil eingesetzt werden. Es ist daher eine kabellose Lösung mit unabhängiger Stromversorgung erforderlich.

Durch die automatische Übertragung per Funk sollen Ablesefehler vermieden werden. Eine Übertragung mit Bluetooth oder anderen gängigen Funkprotokollen von Funkmessuhren ist nicht sinnvoll da die Vorrichtung an unterschiedlichen Stellen im Betrieb eingesetzt werden soll. Eine Kopplung der Funkmodule mit einem Rechner vor jeder Messung ist zudem zu aufwändig und generell problematisch.

Die Messungen sollen Ferngesteuert aus der Ferne ausgelöst werden.

Die Messung mit den Messuhren soll praktisch zeitsynchron in einem sehr engen Zeitfenster (wenige Millisekunden) durchgeführt werden.

Lösung der Aufgabe

Die vorhandenen Messuhren werden mit rAAAreware Funkmodulen M4 ausgestattet. Die Module können einfach auf der Rückseite der Messuhren montiert werden. Auf die Module wird ein leistungsstarker Lithium-Ionen Akku aufgeschoben. Dieser ermöglicht einen langen unabhängigen und kabellosen Betrieb der Funkmodule auf der Vorrichtung. Ein notwendiger baldiger Akkuwechsel wird rechtzeitig sowohl vom Modul als auch über MQTT angezeigt.

Messvorrichtung mit 6 Messuhren welche mit WLAN-Funkmodulen ausgestattet sind.
Ansicht der Messvorrichtung mit 6 Messuhren und den WLAN-Funkmodulen
(Modell M4 mit Akku)

Die WLAN Messuhr-Module werden über das offene und frei verfügbare MQTT Protokoll angesteuert. Somit kann über einen Leitrechner oder einen anderen MQTT Client eine Messung ferngesteuert getriggert werden. Die Ergebnisse werden dann direkt vom MQTT Broker übernommen und können direkt weiterverarbeitet werden. Als Bedienung an der Messvorrichtung ist nur das Einschalten der Messuhren und das Einschalten der Funkmodule über einen Schiebeschalter erforderlich.

Durch die gleichzeitige Messung und Übertragung der Messergebnisse wird ein Qualitätsgewinn und eine Zeitersparnis bei der Durchführung der Messaufgabe erreicht. Die Gesamtmessung ist in sehr kurzer Zeit bei minimaler Fehlermöglichkeit durchführbar.

Alternative Lösungsansätze

Ein alternativer Lösungsansatz ist über eine zentrale Stromversorgung der Funkmodule realisierbar. Wenn z.B. der Platz hinter den Messuhren nicht für das Funkmodul ausreicht können diese an anderer Stelle der Messvorrichtung angebracht werden. Die Verbindung zur Messuhr erfolgt dann nur über das Digimatic Kabel. Die extern auf der Vorrichtung angebrachten Module können dann über einen zentralen Ein-/Ausschalter mit einer zentralen Stromversorgung verbunden werden. Diese zentrale Energieversorgung kann dann ein industrielles Akku-Pack sein oder auch eine gewöhnliche 5V Powerbank. Durch die zentrale Spannungsversorgung der Module wird die Bedienung weiter vereinfacht, da alle Messuhren gleichzeitig und zentral ein- und ausgeschaltet werden können.

Dieser Ansatz wurde bereits bei anderen Prüfvorrichtungen erfolgreich umgesetzt. Auch andere Messuhren oder auch andere Messgeräte sind so über ein serielles Kabel an ein extern montiertes Funkmodul anbindbar.

Kontaktieren Sie uns wenn Sie weitere Informationen zu dieser Aufgabenstellung aus dem Bereich der Längenmesstechnik wünschen.

Wir stellen hier eine Übersicht der aktuell verfügbaren und uns bekannten Funk-Messschieber dar.

Funk Messchieber

Hersteller / VertriebProduktbezeichnungModul oder IntegriertFunktechnologieStromversorgungEmpfängerMessbereich, Messgenauigkeit (Ziffernschritt)InfosPreis
rAAArewareM5ModulWLAN
(WiFi, MQTT)
LiIon / LiPo Akkukein spezieller Empfänger notwendig0 - 600 mm; 0,01mm - abhängig vom MessschieberGeeignet für die meisten Mitutoyo Messschieber und Tiefenmesser.
Auch Modelle für Mahr oder RS232 verfügbar.
240 Euro
Hoffmann-GruppeDigitaler Messschieber HCT IP67 mit Bluetooth, GARANT Art.-Nr.: 412780IntegriertBluetooth 4.2Batterie CR2032kein spezieller Empfänger notwendig0 - 150 mm; 0,01 mm224 Euro
MahrMahr 16 EWRi-VIntegriertAnt+ / ProprietärBatterie CR2032enthalten0 - 200 mm; 0,01 mmauch Ausführungen mit deutlich höherem Messbereich verfügbar.220 Euro
Helios-PreisserDIGI-MET® Taschenmessschieber IP67 mit integriertem FunkIntegriertBatterie CR2032enthalten220 Euro
IBRISM-mit1ModulZigbee? / ProprietärBatterieseparat erhältlichfür Mitutoyo (Digimatic)auch Modelle für Mahr oder RS232 verfügbar80 Euro
MitutoyoU-WAVEModulAnt+? / 2,4 GHz / ProprietärBatterie CR2032separat erhältlichbenötigt eigenen Empfänger140 Euro
TESATesa TLCModulAnt+? / ProprietärBatterie CR2032separat erhältlichpassend für TESA TWIN Messschieber165 Euro
SylvacS_Cal EVO SMART - 8101516IntegriertBluetoothBatterie CR2032kein spezieller Empfänger notwendig0 - 150 mm220 Euro
MIB Messzeuge

(Importeur)
Digital-Messschieber inklusive Bluetooth induktives MesssystemIntegriertBluetooth 4Batterie 3Vkein spezieller Empfänger notwendig0 - 150 mm220 Euro
MIB Messzeuge

(Importeur)
MIB Bluetooth DatensenderModulBluetoothBatterie 3Vkein spezieller Empfänger notwendig120 Euro
Messschieber mit Funk-Funktion (Bluetooth, WLAN, Zigbee, Ant+) oder Funk-Module für Messschieber

Auch wenn wir (noch) ein kleiner Hersteller sind brauchen wir uns nicht verstecken und lassen uns gerne mit den “Großen” der Branche in dieser Marktübersicht vergleichen. Der Produktvergleich der Messschieber zeigt: Die einzigen die echtes IIoT, MQTT und WLAN beherrschen sind wir. Die anderen können immerhin Bluetooth für kurze Distanzen oder etwas längere Distanzen mit proprietären Protokollen und separat erhältlichen Empfängern.

Dieser Artikel wurde im Dezember 2020 erstellt nachdem im “Industrial Outlook” der Vogel-Mediengruppe ein Bluetooth Messschieber der Fa. Garant vorgestellt wurde. Es verwunderte uns, dass dies als eine Neuheit vorgestellt wurde – wo wir doch seit über 2 Jahren “echte” WLAN Messmodule fertigen. Und überhaupt: Bluetooth ist nun wirklich nichts neues mehr.

Wir haben diese Tabelle und den Vergleich nach bestem Wissen und Gewissen erstellt. Trotzdem gilt: Alle Angaben sind ohne Gewähr. Informieren Sie sich bei Fragen bei uns oder bei den anderen Herstellern der Messmittel. Einige genannte Marken oder Bezeichnungen sind vermutlich eingetragene Marken der Hersteller. Wir besitzen hier keine Markenrechte und verwenden die Namen unter Respektierung der Markenrechte der Eigentümer.

Ein Laser Entfernungsmesser wird verwendet um schnell und zuverlässig den Abstand zwischen 2 Objekten zu bestimmen. Voraussetzung für eine Messung über einen Laserstrahl ist die freie Sichtverbindung zwischen den Messpunkten. Laser-Entfernungsmesser sind in vielen unterschiedlichen Ausprägungen am Markt erhältlich. Das verwendete LIDAR Messprinzip ist für die gebräuchlichen Modelle gemeinsam. Das Alleinstellungsmerkmal des von uns hergestellten Entfernungsmessers ist die direkt Anbindung des Messgerätes über WLAN an ein Netzwerk bzw. an das Internet. Als WLAN-Übertragungsprotokoll wird hierbei MQTT eingesetzt. Dies ermöglicht den sehr einfachen Zugriff auf die Messwerte und auf die Funktionen des IoT-Device von jeder Anwendung welche MQTT-fähig ist.

Zum Vergleich: Entfernungsmesser mit Bluetooth-Schnittstelle können zwar auch die Messwerte per Funk übertragen, der Empfänger muss jedoch speziell auf dieses Gerät zugeschnitten sein. Eine Übertragung in ein beliebiges Programm oder in eine Datenbankanwendung ist hier – wenn überhaupt – nicht ohne großen Zusatzaufwand möglich.

Ein weiteres besonderes Feature unseres Lasermessgerätes ist es, dass es nicht mit Batterien sondern mit einem LiIon-Akko (Lithium-Ionen-Akku) betrieben wird. Die Akkus können zudem über einen Standard-Stecker schnell und einfach gewechselt werden. Über Wechselakkus ist somit ein kontinuierlicher Betrieb des IIoT Messgerätes möglich.

Die verwendeten Akkus sowie die Ladegeräte sind kompatibel zu unseren WLAN-Modulen für unsere Messuhren der Modellreihe M4 sowie zu unserem WLAN-PIR-Temperatur-Messgerät.

Download der Dokumentation und Software zu unseren WLAN MQTT Produkten sowie Links zu Support Informationen.

WLAN MQTT Module

(M3 und M4 WLAN Messuhr, M5 WLAN Messsschieber, M6 WLAN Bügelmessschraube)

Schnellstartanleitung und Kurzreferenz

Download als PDF Datei:

https://dl.raaareware.de/messuhr/Messuhr_Modul_QuickStart_and_Cheatsheet.pdf

WLAN Modul Dokumentationen

https://dl.raaareware.de/messuhr/Messuhr_Modul_Doku_Benutzer.pdf
https://dl.raaareware.de/messuhr/Messuhr_Modul_Doku_Technik.pdf

WLAN module documentation in english

https://dl.raaareware.de/messuhr/EN_Wlan_Mqtt_Module_Doc_Technical.pdf

Software

MQTT 2 File

Test- und Konfigurationssoftware für unsere MQTT WLAN Module.
Doku: https://dl.raaareware.de/messuhr/Messuhr_Software_MQTT2File.pdf
Windows: https://dl.raaareware.de/messuhr/mqtt2file.zip
Android: https://dl.raaareware.de/messuhr/mqtt2file.apk

MQTT 2 Key

Die Software MQTT2Key ermöglicht die Übernahme von MQTT Daten in eine nicht-MQTT-Windows Anwendung wie z.B. LibreOffice oder Excel.

Download der Windows Software

Einleitung und Übersicht

Eine MQTT Infrastruktur für industrielle Anwendungen zu betreiben ist genauso wie MQTT an und für sich: Einfach und flexibel. Trotzdem ist es wie für alle Vorhaben empfehlenswert einige Vorüberlegungen anzustellen und zu entsprechend zu planen. Dies verhindert, dass die erstellte Infrastruktur direkt nach der Fertigstellung angepasst werden muss. Weiter ist es notwendig, angrenzende Bereiche vor allem aus dem Bereich der Netzwerkinfrastruktur in die Überlegungen und Entscheidungen mit einfließen zu lassen.

Grundsätzlich lässt eine MQTT Infrastruktur in 3 Teile unterteilen: Die Sensoren oder Aktoren (IoT Devices) als primäre Datenlieferanten, den MQTT Broker als Vermittler der Daten und das Backend als primärer Abonnent der Daten. Dies ist eine logische Aufteilung. MQTT-Technisch gibt es Publisher (= Datenlieferanten) und Subscriber (=Datenabonnenten) – doch jeder Publisher kann auch selbst Daten beziehen und jeder Subscriber kann auch Daten senden (und macht dies normalerweise auch). Trotzdem ist es eher so, dass im Datenbackend eher mehr Subscriber von Nutzdaten sitzen und die Devices als Sensoren und Aktoren die primären Datenlieferanten des Systems sind.

Das Bindeglied zwischen den 3 Komponenten des Systems ist das Netzwerk. Bei einer MQTT Infrastruktur geht es also um klassische TCP/IP Netzwerktechnik.

Eine MQTT Device ist normalerweise über WLAN an das Netzwerk angebunden. Wir haben in unserer Netzwerkinfrastruktur also ein WLAN Netzwerk integriert.

Einfachste Infrastruktur

In der einfachsten Infrastruktur befindet sich alles in einem einzigen Netzwerk (LAN, Local area network). Es kommt keine spezielle industrielle Hardware zum Einsatz. Vielmehr dient ein einfacher Accesspoint als Zugangspunkt zum Netzwerk mit MQTT Broker und Backend.

Einfache MQTT Client / MQTT Broker Infrastruktur

Der MQTT Broker kann hierbei auf irgendeinem Rechner des Netzwerks laufen. Möglich ist es sogar, sowohl Broker als auch Accesspoint auf einem einzigen Android Endgerät zu betreiben. Somit besteht die gesamte Infrastruktur z.B. nur aus der IoT Device und einem Tablet. Dieser Sepzialfall einer MQTT Architektur ist in unserem Artikel MQTT Broker auf Android beschrieben.

Gateway als MQTT Broker

Eine fast genauso einfache Infrastruktur setzt einen MQTT Broker als Gateway zwischen 2 LAN Netzwerken ein. Dieser Broker kann als proprietäres System oder als Linux System umgesetzt sein.

MQTT Infrastuktur mit Gateway zwischen Produktionsnetzwerk und Firmennetzwerk.

Firmen wie die Wiesemann & Theis GmbH (www.wut.de) bieten einen einfachen MQTT Broker als fertige Komponente an. Alternativ kann ein kleiner Linux Rechner wie z.B. ein Raspberry Pi Rechner als MQTT Broker eingesetzt werden. Die erste Option bietet eventuell einen etwas leichteren Einstieg in die Konfiguration, da diese komplett über eine WEB Oberfläche vorgenommen werden kann.
Der Raspberry Computer bietet dagegen eine maximale Flexibilität durch ein komplett offenes und frei konfigurierbares System welches mit Sicherheit über viele Jahre gepflegt und weiterentwickelt wird.
Mit dem von uns entwickelten und angeboten Raspberry Industrierechner können wir ein System liefern welches eine sehr einfache Konfiguration ermöglicht und trotzdem die maximale Flexibilität eines quelloffenen und freien Linux Systems bietet.

MQTT Broker im WAN Netzwerk

Eine für nicht-industrielle Anwendungen häufig umgesetzte Konfiguration ist die Verwendung des MQTT Brokers als Service in einer Cloud, also auf einem entfernten Rechner in einem WAN (wide area network; Internet).
Dies vereinfacht die Gesamtkonfiguration und den Betrieb etwas, da ein MQTT Broker eben überhaupt gar nicht erst installiert und konfiguriert werden muss. Dies ist natürlich auch für Industrielle Anwendungen denkbar.

MQTT Infrastruktur mit einem MQTT Broker in der Cloud

Meist kommt diese Konfiguration aus mindestens 2 Gründen nicht zum Einsatz:

Erstens ist die Grundanforderung der Unabhängigkeit einer Industrieanlage nicht gewährleistet. Sollte der externe Dienst des MQTT Brokers aus irgendeinem Grund nicht mehr erreichbar sein ist eine Produktion im schlimmsten Fall nicht mehr oder nur noch deutlich eingeschränkt möglich.

Ein zweiter Grund ist, dass Daten der Anlage außerhalb des lokalen Netzwerkes oder Firmennetzwerkes gespeichert werden. Zwar können die Datenverbindungen und Übertragungen unter MQTT z.B. Passwort oder über eine TLS/SSL Verschlüsselung geschützt werden, ein Risiko zur Einsicht oder Manipulation der Daten auf dem Server selbst bleibt jedoch bestehen.

Wenn man bedenkt, wie einfach ein MQTT Server installiert, administriert und betrieben werden kann ist es empfehlenswert den MQTT Server in einem lokalen Firmen-LAN zu betreiben.

Infrarot Thermometer (PIR Thermometer, Passive Infra Red Thermometer oder Pyrometer) werden in der Industrie eingesetzt um Temperaturen berührungslos zu messen. Im Gegensatz zu unseren Messmodulen für lineare Längenmessung gibt es hier eine große Auswahl an Produkten am Markt. Jedoch gilt auch hier: Die meisten Geräte besitzen keine Möglichkeit die erfassten Messwerte per Funk an einen PC oder ein Smartphone weiterzugeben. Einige wenige Modelle besitzen ein eingebautes Bluetooth Funkmodul über welches sich die Daten an eine proprietäre Software übertragen lässt. Dies alles ist nicht wirklich industrietauglich oder Industrie 4.0. Gleichzeitig ist es jedoch die Gelegenheit für uns, auch hier ein entsprechendes Infrarot Thermometer zu entwickeln.

Ansicht des WLAN Infrarot-Thermometers von oben
Ansicht des WLAN-PIR-Thermometers von unten
  1. PIR Sensor (90° um die Y-Achse drehbar)
  2. Bildschirm (OLED Display)
  3. Anzeige der Funkverbindung (WLAN Signalstärke)
  4. Anzeige des Akku-Ladestandes
  5. Lithium-Ionen oder Lithium-Polymer Akkumodul
  6. Multifunktionssteckverbindung für Akku oder Peripherie
  7. Hauptschalter für die Spannungsversorgung
  8. Messtaste für manuelle Messungen und Multifunktionstaste

Die Alleinstellungsmerkmale unseres Infrarot Thermometer für industriellen Einsatz sind:

  • Echtes WLAN. Direktes Verbinden des Infrarot Thermometers mit einem WLAN/WiFi Netzwerk.
  • Sichere Funkübertragung auch unter schwierigen Bedingungen.
  • MQTT Datenprotokoll.
  • Sehr kleine Bauweise durch hohe Integration der Bauteile.
  • Sensorausrichtung um bis zu 90° drehbar.
  • Montagemöglichkeiten für Wandmontage oder Montage auf Lochblech.
  • Lange Laufzeit durch Lithium-Ionen Akku (LiIon).
  • Schnellwechselsystem für den Akku.
  • Große Auswahl an Ladestationen für den Akku.
  • Hohe Konfigurationsmöglichkeit durch den Kunden durch unsere agile Fertigung.

Die Authentifizierung des Thermometers am WLAN Netzwerk erfolgt über Angabe der SSID und des Passwortes. Über WPA2 werden die übertragenen Daten sicher vor unbefugtem Zugriff geschützt.

Die Weitergabe der Daten erfolgt im offenen MQTT Protokoll. Das MQTT Protokoll wurde entwickelt, um Messdaten einfach und zuverlässig auch über große Distanzen sicher zu übertragen. Die MQTT “Empfangsstation” wird MQTT Broker oder MQTT Server genannt. Diese Software ist als freie Software kostenlos auf für die kommerzielle Nutzung verfügbar. Über einen MQTT Client lassen sich sämtliche Anwendungen zur Messdatenverarbeitung realisieren: Sei es die Weiterverarbeitung in einem nachgelagerten Prozess für die Qualitätssicherung oder auch nur die direkte Eingabe der Messwerte in z.B. eine Tabellenkalkulation wie LibreOffice oder Excel.

Funktionsweise des PIR Funkthermometer

Das Funk-Thermometer kennt 2 Betriebsarten:

  • Konfiguration
  • Messen

In der Betriebsart [Konfiguration] öffnet das Thermometer einen WLAN Access Point. Über diesen kann ein beliebiger Client eine Verbindung zum Thermomenter herstellen. Über diese Verbindung kann dann die gewünschte Konfiguration auf das Messgerät übertragen werden.
Der primäre Sinn der Konfiguration besteht darin, das Modul für den Zugriff auf einen MQTT Server zu konfigurieren.
Die Konfiguration wird normalerweise über unser Konfigurationsprogramm durchgeführt. Dort können alle erforderlichen Parameter eingestellt werden.

Nach erfolgreichem Laden einer Konfiguration startet das Modul in der Betriebsart [Messen]. Der eigene WLAN Accesspoint wird hierzu dann deaktiviert.
Stattdessen versucht das Modul sich mit dem konfigurierten WLAN Accesspoint zu verbinden. Die Authentifizierung erfolgt hierbei über WPA2/PSK.
Nach erfolgreicher Verbindung mit dem Accesspoint wird versucht eine Verbindung mit dem konfigurierten MQTT Server herzustellen.
Ist diese Verbindung erfolgreich kann das Messgerät direkt über MQTT Botschaften versenden und empfangen.

Über eine Softwarefunktion oder über die Servicetaste am Messmodul lässt sich das Messgerät wieder in den Konfigurationsmodus versetzen [Factory Reset].

Aktualisierung der Firmware

Die Firmware der Messgeräte-Erweiterung kann über WLAN aktualisiert werden (OTA-Update/Over The Air Update).
Der Aktualisierungsvorgang wird auf dem Display angezeigt.
Die Aktualisierung wird nur dann aktiviert wenn die gesamte Firmware fehlerfrei über das WLAN in das Modul übertragen werden konnte.
Die Aktualisierung der Firmware wird über verschiedene optionale Mechanismen geschützt:

  1. Über eine explizite geschütze Freischaltung über eine entsprechende MQTT Botschaft.
  2. Über eine Tastenkombination am Modul.

Technische Daten

WertEinheit
Länge (PIR Sensor auf 0°)110mm
Breite (incl. Akku-Modul)38mm
Höhe (PIR Sensor auf 0°)26mm
Gewicht (incl. Akku-Modul)90g
Akkukapazität des Akku-Moduls650mAh

Unser Know-how und unsere Leidenschaft ist Funktechnik, WLAN und MQTT. Für die Sensorik der Temperaturmessung vertrauen wir auf bewährte Hersteller von Industriellen Sensoren zur Temperaturerfassung. In der Standardausführung verwenden wir Infrarotsensoren der Baureihe MLX90614 der Fa. Melexis N.V aus Belgien.

Die Daten dieser Sensoren sind:

MLX90614 VarianteWertEinheit
Messbereich (Objekttemperatur)-70 – 380°C
Umgebungstemperatur (Variante E)-40 – 85°C
Umgebungstemperatur (Variante K)-40 – 125°C
Messauflösung0,02°C
Genauigkeit (0-50°C)0,5°C

Die exakten Daten der Sensoren können direkt im Datenblatt des Herstellers abgerufen werden.

Wir freuen uns über Kundenwünsche und können auch andere Sensoren in unser Funkthermometer integrieren.

Für unseren Kunden capricorn group entwickelten wir Komponenten für eine Mess- & Prüfaufnahme.

Prüfaufnahme für ein Carbon Bauteil mit Messuhr und elektrischem Anheber der Messuhr.
Bedienteil der Messuhr-Anheber sowie Messwert-Anzeige der Mitutoyo-Messuhren

Das Projektbeispiel zeigt die Vorrichtung einer Mess- & Prüfaufnahme für ein Carbon Dach.
Die elektrisch gesteuerte Anhebung und Absenkung der Messuhren stellt eine schnelle und exakte Positionierung der Dächer in Fahrzeuglängsrichtung auf der Vorrichtung sicher.
Gegenüber einem manuellen Einmessen ergibt sich dadurch bei jedem Bauteil eine deutliche Zeitersparnis und Fehler werden sofort erkannt.
Die digital erfassten Daten lassen sich in nachgelagerten Systemen zur Qualitätssicherung protokollieren und archivieren.

Über Capricorn

Die capricorn GROUP ist ein Entwicklungsdienstleister mit dem Schwerpunkt Automobilindustrie und Motorsport.

Copyright Hinweise

Für die 4 gezeigten Bilder der Vorrichtung gilt: Diese unterliegen dem Copyright © capricorn. Eine Reproduktion oder Wiedergabe des Ganzen oder von Teilen ist ohne die schriftliche Genehmigung capricorns nicht gestattet.

Einleitung

Das Programm mqtt2key (MQTT to Keyboard – MQTT zu Tastatur) dient zur Datenübertragung. Werte, welche über MQTT empfangen werden können damit direkt an die Tastaturschnittstelle weitergegeben werden. Damit eignet sich das Programm zur Übertragung von beliebigen Messwerten oder Eingabedaten an praktisch jede Anwendung zur Messdatenverarbeitung.

In IIoT Anwendungen, also industriellen Anwendungen für IoT, wird bevorzugt das MQTT Protokoll eingesetzt. Normalerweise “sprechen” dann alle verbundenen Programme MQTT. Die Werte können von jedem Programm direkt und einfach verarbeitet werden.

Es sind verschiedene Szenarien denkbar und in unserer Erfahrung schon aufgetreten, in welchen ein Programm MQTT Messwerte verarbeiten soll, jedoch nicht direkt auf einen MQTT Server zugreifen kann.

MS Excel

In sehr einfachen Szenarien kann es sein, dass der Messwert nur in einem Tabellenkalkulationsprogramm wie LibreOffice oder Excel gespeichert werden soll. Zwar wäre es prinzipiell sicherlich möglich, auch hier eine MQTT Ankopplung zu realisieren – ein sehr einfacher Weg ist es jedoch, einfach die Werte direkt in eine Tabellenzelle einzutragen.
Der Vorteil gegenüber einer manuellen Eingabe liegt auf der Hand: Durch die automatisierte Übertragung ist sichergestellt, dass der Wert auch korrekt übernommen wurde. Die Prozesssicherheit und Qualität der Messwerte steigt, da ein Ablesefehler oder Eintragefehler (z.B. Zahlendreher) sicher vermieden wird.

Ein weiterer Vorteil ist, dass die Übertragung deutlich schneller geht, als den Wert manuell abzulesen und einzutippen.

WEB Anwendungen

Eine weitere Anwendung ist die Verarbeitung der Daten durch ein Programm welches in einem Web-Browser betrieben wird.

Zwar kann ein Web-Browser einfach und direkt über eine Ajax-Web-Schnittstelle auf einen MQTT Broker zugreifen, jedoch ist es nicht immer möglich, das verwendete Programm dahingehend zu erweitern oder zu verändern, dass die Messwerte direkt eingetragen werden.

Auch hier kann über das einschleusen der MQTT Werte in die Tastaturschnittstelle einfach eine automatische Übernahme der Messwerte umgesetzt werden.

Sonstige Anwendungsbereiche

Weitere Anwendungsfälle sind unendlich verfügbar. Jedes Programm, egal ob Konsolenprogramm, Browserprogramm oder Windows-Programm, welches Tastatureingaben entgegennimmt kann mit dem MQTT Hilfsprogramm mqtt2file als Empfänger von MQTT Messwerten verwendet werden.

Die weitere Verwendung von MQTT ist hierbei nicht relevant. Es ist gut vorstellbar, über das Programm schlicht und einfach eine Messuhr, ein Messschieber oder eine Bügelmessschraube per WLAN drahtlos mit dem Computer zu verbinden um die Werte dann direkt in einem beliebigen Programm weiter zu verarbeiten.

Funktionsweise

Das Programm läuft normalerweise im Hintergrund. Es verbindet sich mit dem konfigurierten MQTT Broker und nimmt die Messwerte des konfigurierten Messmittels entgegen. Diese Werte werden dann direkt an die Tastaturschnittstelle weitergegeben.

Optional kann ein systemweiter Hotkey oder Shortcut (“Direkttaste”) definiert werden: Über diesen lässt sich dann eine Messung oder ein Messwert direkt vom PC aus über MQTT anfordern.

Konfiguration

Das Programm muss nicht installiert werden. Es wird einfach an einem beliebigen Ort auf der Festplatte (oder auch einem USB-Stick) abgelegt und kann direkt ausgeführt werden.

Der Hauptbildschirm der Anwendung

Nach dem Start des Programms erscheint der Hauptbildschirm der Anwendung.

Die Einstellungen sind selbsterklärend und werden beim Beenden des Programms gespeichert.

Die Messwerte werden wie von z.B. der Messuhr geliefert weitergegeben. Z.B. “-12.34”. Wenn ein Programm die Werte in einer anderen numerischen Notation erwartet kann der Wert in die Notation des Landes anpassen, auf welchem das Programm aktuell ausgeführt wird. Auf einem Computer mit deutschem Gebietsschema würde dann z.B. “-12,34” an die Tasttatur ausgegeben werden.

Beim schließen des Programms wird das Programm lediglich in die TNA (Taskbar Notification Area) minimiert. Dort ist es dann weiter als kleines Symbol sichtbar und läuft im Hintergrund.

Wenn ein Messwert übertragen wird blinkt dieses Symbol kurz auf.

Durch klick auf das Symbol wird der Hauptbildschirm wieder dargestellt.

Durch klick mit der rechten Maustaste kann das Programm endgültig geschlossen werden.

Auf der 2. Registerseite der Anwendung sind Details zu MQTT zu sehen.

Download und Installation

Das Programm ist Freeware und kann kostenlos hier heruntergeladen werden. Das Programm sollte auf jedem neueren Windows Rechner problemlos laufen. Wir übernehmen hierbei keine Garantie für die Funktion – siehe auch unten unter “Rechtliches”. Das Programm muss nicht installiert werden. Entpacken Sie die Dateien einfach in ein beliebiges Verzeichnis. Zum Starten rufen Sie das Programm “mqtt2key.exe” auf.

Rechtliches

(c) rAAAreware GmbH

Diese Software wird zur Verfügung gestellt, so wie sie ist, ohne
ausdrückliche oder implizite Garantie.
Keinesfalls ist der Autor verantwortlich für etwaigen Schaden, der durch die Verwendung dieser Software auftritt.

Es wird allen Nutzern des Programms bewilligt, diese Software für
jeden möglichen Zweck einzusetzen, kommerzielle Nutzung inbegriffen,
solange folgende Bedingungen erfüllt werden:

  1. Jegliche Weitergabe des Pakets muss alle Angaben obiger Copyright
    Nennung und die Webadresse beinhalten.
  2. Die Herkunft der Software darf nicht falsch dargestellt werden, es
    darf also nicht fälschlicherweise behauptet werden, der Autor dieser
    Software zu sein.
  3. Veränderte Versionen müssen als solche deklariert und nicht als
    Originalsoftware dargestellt werden.
  4. Jegliche Weitergabe des Pakets hat unentgeltlich zu erfolgen.
    Eine kommerzielle Weitergabe ist nicht ausgeschlossen, bedarf
    jedoch einer Rückfrage beim Autor.

Funkstandards bei IoT / IIoT Technologien für Industrie 4.0

Bei der Anbindung von Messmitteln an eine IIoT Industrie 4.0 Infrastruktur stellt sich immer wieder die Frage, auf welchen Funkstandard oder Funktechnologie man setzen kann, soll, muss oder darf. Inzwischen bewerben sich viele verschiedene Protokolle und/oder Standards wie WLAN / Wi-FI, Bluetooth, Ant+ oder ZigBee um den Einsatz in der Fabrikhalle oder Fertigung. Hersteller entscheiden sich für einen dieser Standards oder verwenden einen ganz eigenen – wie das U-Wave von Mitutoyo – obwohl auch diese Ansätze dann wieder auf Standards wie IEEE 802.15.4 aufsetzen.

Wenn ein Unternehmen IIoT in der Produktion umsetzen will kommt es nicht umher sich mit diesen Funkstandards auseinander zu setzen. Wer dies nicht tut endet in einem Chaos von Systemen und eventuell instabilen oder sich gegenseitig beeinflussenden Funksystemen. Gleichzeitig hilf es nicht weiter überhaupt nichts zu tun oder sich einfach stoisch für ein System zu entscheiden. Im 2. Fall wird man festzustellen, dass viele gewünschte Dinge dann einfach nicht umsetzbar sind. Es gilt die beste Lösung zu finden und auch Kompromisse zu machen um die Herausforderungen der IoT in der Automatisierungstechnik erfolgreich umzusetzen.

Mit einem Vergleich und einer Gegenüberstellung der verschiedenen Funksysteme mit industrieller Eignung versuchen wir etwas Licht in dieses Thema zu bringen.

Wir sind ein Hersteller von WLAN-Modulen für die Messtechnik und sicherlich keine wissenschaftlichen Nachrichtentechniker. Aber gerade dies ermöglicht uns einen praxisorientierten Blick auf die Thematik welchen wir durch unsere langjährige Erfahrung in der Zusammenarbeit mit unseren Industriekunden verfestigen konnten.

Sie können unseren Artikel zu Funkstandards bei IoT / IIoT Technologien für Industrie 4.0 hier lesen oder downloaden.

Rechtliches

Einige Namen in diesem Text können Urheberrechtlich geschützt sein.
Bluetooth ist eine eingetragene Marke der Bluetooth SIG, Inc.
ANT+ ist ein eingetragene Marke der ANT Alliance bzw. Garmin.
Zigbee ist eine eingetragene Marke der Zigbee Alliance, USA.
Wi-Fi ist eine eingetragene Marke der Wi-Fi Alliance.
Wir weisen darauf hin, dass wir keine Rechte an diesen Namen haben oder beanspruchen, diese Namen nur redaktionell zur Erklärung verwenden und keine Verbindung zu den Firmen mit den Namensrechten haben.