Universelles WLAN MQTT Modul für digitale und analoge Datenverarbeitung

Einleitung und Zielsetzung

Seit einigen Jahren fertigen wir erfolgreich und zuverlässig unsere WLAN Module für Handmessmittel wie Messuhren, Messschieber und Bügelmessschrauben.
Immer wieder kommt es vor, dass Kunden neben einem Messmittel auch noch andere Geräte aus dem Qualitätsprozess über MQTT ansprechen oder auslesen möchten.
Dies können andere Prozesshardware wie Sensoren, Messgeräte, Eingabegeräte oder Signalgeräte aus der Automatisierungstechnik oder Prozesstechnik sein.
Aus diesem Grund haben wir nun ein eigenständiges Mini-Modul entwickelt, welches genau diese Anforderung abdeckt.
Nur wenige Ein-/Ausgänge ermöglichen eine einfache Konfiguration und Anwendung der Device.
Trotzdem stehen alle Möglichkeiten zur Verfügung wie Sie auch für die Messuhr-Module vorhanden sind:

Pilztaster in 80x80 mm Gehäuse mit WLAN MQTT Funktion. Ansicht zeigt die Rückseite mit 5.5 Hohlbuchse zum Anschluss der Spannungsversorgung.
Einfachste Anwendung des WLAN MQTT Moduls in einem Pilztaster

Produktmerkmale

  • Digitale oder Analoge Messergebnisse direkt per Funk (WLAN) übertragen.
  • Volle Netzwerkfunktionalität über WLAN.
  • Optionales OLED Display zur Anzeige von Bedienhinweisen und Status.
  • Flexible Spannungsversorgung für mobilen oder lokalen Einsatz.
  • Stromversorgung über Akku oder USB.
  • Hohe Konfigurationsmöglichkeit über MQTT.
  • Überwachung von WLAN-, MQTT und Batteriestatus.
  • PowerManagement mit Auto-Power-On, StandBy und Auto-Power-Off Funktion.
  • Hohe Messfrequenz und Quasi-Echtzeit Messungen möglich.

Produktausprägungen

Wir verfolgen den Grundsatz der agilen Entwicklung und agilen Fertigung.
Alle Produkte werden in Kleinserie gefertigt. Dies ermöglicht eine ideale Anpassung auf Kundenwünsche.

Modulansicht des WLAN MQTT Moduls mit 10 poligem Universalstecker und einzelnen Anschlusssteckern für weitere Ein-/Ausgänge.
Universelles WLAN MQTT Modul

Entsprechend können wir sagen: Alles ist möglich.
Normalerweise ist bei den Modulen auch der 10-polige Anschlussstecker vorhanden, so dass die üblichen Module direkt verwendet werden können.
Sprechen Sie uns an, wenn Sie ein beliebiges Gerät per MQTT auslesen oder adressieren möchten.
Wir finden eine einfache und sichere Lösung.

Als Beispiel die Anbindung eines Messtasters zum Auslösen einer Längenmessung über WLAN/MQTT.

Das MQTT Modul wird direkt im Messtaster untergebracht.
Eine Verkabelung reduziert sich auf das minimum einer 5V Spannungsversorgung z.B. über ein Steckernetzteil oder eine USB-Schnittstelle. Optional natürlich auch über eine Batterie oder einen Akku.
Die Anbindung an die Prozesstechnik erfolgt kabellos über WLAN im MQTT Protokoll.

Aus dem MQTT Signalgeber wird lediglich die Stromversorgungsbuchse und eine Status-LED herausgeführt.

Geöffneter WLAN-Taster mit Blick auf das verbaute MQTT-Modul:

Blick auf den geöffneten Handtaster. Im innern des Tasters ist das verbaute und verkabelte Modul zu sehen.
Geöffneter Handtaster mit verbautem MQTT WLAN Modul.

Als Alternative zu diesem Universalmodul gibt es inzwischen auch unsere MQTT Fernbedienung. Diese ist was die verwendete Firmware angeht nochmal deutlich universeller und flexibler konfigurierbar und hat insgesamt einen ähnlichen Einsatzbereich.

WLAN Modul für Bügelmessschrauben

Geeignet für digitale Bügelmessschrauben mit Digimatic-Datenausgang (z.B. Mitutoyo Bügelmessschrauben)

Unsere Wireless WLAN Funkmodule für Bügelmessschrauben ermöglichen es Messwerte des Messmittels über das MQTT IoT Protokoll zu versenden. Das Modul ist geeignet für alle Mitutoyo Messschrauben mit Digimatic Datenausgang. Wie unsere anderen Module unterstützt dieses Funkmodul MQTT als IIoT Standard und kann einfach und zuverlässig in eine MQTT Infrastruktur eingebunden werden.
Die Funktionen sind identisch zum Funk-Modul für die Messuhr:

  • Genaue und sichere Übertragung der Messwerte per Funk auch über große Distanzen in schwierigem Umfeld.
  • Echtes IoT durch Übertragung per TCP/IP direkt im Netzwerk.
  • Keine Kopplung wie bei Bluetooth Funkmodulen notwendig.
  • Sichere Anmeldung an einem WLAN/WiFi Netzwerk über WPA2/PSK.
  • Auslösung der Messungen per Funk über eine Fernauslösung (MQTT-Protokoll) oder über die Multi-Funktionstaste direkt am Modul an der Bügelmessschraube.
  • Überwachung des Akku-Ladestandes des Funkmoduls über MQTT.
  • Multi-Funktions-LED am Sendemodul zur Überwachung und Kontrolle der Modulzustands und der Signalübertragung der Funkeinheit.

Digitalisierung in der Messtechnik

Immer noch werden in der Messtechnik die Messergebnisse zwar digital ermittelt – z.B. mit einer Digitalen Bügelmessschraube – dann aber analog weiterverarbeitet. Im schlimmsten Fall über die händische Übertragung auf Papier. Auch das Ablesen von der Messeinrichtung und eintippen des Messwertes auf einem PC ist noch keine Digitalisierung. Es birgt das Problem der Ablesefehler, der Übertragungsfehler oder der Tippfehler. Mit schwerwiegenden Folgefehler für Qualität und die Prozesssicherheit. Die Lösung des Problems ist einfach: Mit einer Funkverbindung vom Messgerät zum weiterverarbeitenden System oder auch nur in die Datenablage zur Protokollierung, Archivierung oder Auditierung werden Fehler vermieden und die Werte fehlerfrei und sicher gespeichert.

Produktvarianten

Integrierter Akku

Modul in Ladestation

Unser Modul M6 besitzt einen integrierten Akku. Die Messuhr-Funkmodul Kombination ist in einer Ladehalterung abgelegt und wird nur für die Messung aus der Ladeschale genommen.

Das Modul ist für Situationen geeignet, in denen eine Ablage der Bügelmessschraube am Einsatzort gewünscht ist und die Bügelmessschraube nur für die Zeit der Messung aus der Ladeeinrichtung genommen wird.

Wechselakku

Modul M4BM mit Wechselakku

Das Modul M4BM ist kompatibel mit den Slim Akkus der M4 Modulreihe. Die Wechselakkus werden direkt auf das Modul gesteckt und liefern für eine längere Zeit genug Strom um das WLAN-Modul zu betreiben.

Das Modul ist für Situationen geeignet, in denen das Messmittel entweder in einer zentralen Messmittelablage abgelegt ist und nur gelegentlich für eine Messung ausgegeben wird oder wenn die Bügelmessschraube länger oder dauerhaft für mobile Messeinsätze benötigt wird und eine Ablage in einer Ladestation nicht zweckmäßig ist. Die Akkus werden zentral in einem unserer Ladegeräten geladen und können einfach an der Messschraube eingesteckt werden.

Modulinformation M6 (Integrierter Akku)

Das Modul M6 wird direkt an der Messschraube angebracht.
Ein eingebauter Lithium-Polymer Akku versorgt entweder nur das Modul oder optional auch die Bügelmessschraube mit Energie.
Die Akku-Kapazität reicht für ca. 100 Messungen aus.
In den Messpausen wird die Messgerät-Modul-Kombination einfach in der mitgelieferten Ladeeinrichtung abgelegt.

Über 2 Goldkontakte an der Unterseite des Module wird das Modul kontinuierlich geladen um jederzeit mit vollem Akku wieder Einsatzbereit zu sein.
Zusätzlich kann für einen dauerhaften Betrieb ohne Ladeschale die Funk-Einheit mit einem Magnetladekabel aufgeladen werden.

Die Messuhr mit Ladestation wird optional in der eigens dafür entwickelten maßgeschneiderten Aufbewahrungsbox ausgeliefert.

Ladestation

Die Ladestation ermöglicht neben dem Laden des eingebauten Lithium-Ionen Akkus auch die sichere und stabile Ablage der Messschraube mit Funkmodul. Die Ladestation kann direkt über ein USB (Mini- oder Micro-USB) Kabel mit dem mitgelieferten Netzteil verbunden werden oder an eine andere beliebige 5V Spannungsversorgung angeschlossen werden. Optional ist ein Magnetladekabel verfügbar um das WLAN-Modul der Bügelmessschraube auch in eingebauter oder eingespannter Messsituation mit Strom zu versorgen.

Bild der WLAN-Messschrauben-Ladestation, montiert auf einem Lochblech
Ablage der WLAN-Funk-Bügelmessschraube mit Ladefunktion über USB

Modulinformation M4BM (Wechselakku)

Das Modul M4BM wird mit Wechelakkus (Lithium-Ionen oder Lithium-Polymer Akkus) betrieben. Dadurch ist ein kontinuierlicher Betrieb z.B. mit mehreren Wechselakkus möglich. Ein Akku ist hierbei am Messmittel, die anderen in der Ladestation. Wenn vom Modul ein niedriger Ladezustand des LiIon-Akkus gemeldet wird, wird der Akku mit einem Akku in der Ladestation getauscht.

M4BM – Ansicht von vorne

Die Ansicht von vorne unterscheidet sich kaum vom Modul M6. Der Unterschied ist auf der Rückseite ersichtlich. Anstatt einem fest verbauten Akku kann der Akku einfach gewechselt und mit verschiedenen Kapazitäten ausgestattet werden.

M4BM – Rückseitige Ansicht

Der Akku wird an der Rückseite der Bügelmessschraube auf unsere Standard-Buchse aufgesteckt und kann leicht gewechselt werden. Auf die Universalbuchse können auch unseren anderen Module, wie z.B. unser externes Display angeschlossen werden.

Digimatic Datenanschluss

Der Digimatic Datenanschluss bei Bügelmessschrauben in IP67 Ausführung ist nicht mit einem normalen Digimatic Stecker mit Schleifkontakten versehen. Auch für diese Spezialstecker in IP67 bieten wir unsere Module an.

Rechtliches

Mitutoyo und Digimatic sind vermutlich eingetragene Warenzeichen von Mitutoyo. Wir verwenden diese Bezeichnungen hier zur Erklärung des IoT Moduls (der Hardware und Software). Wir stehen in keiner Verbindung zu Mitutoyo – setzen aber sehr gerne und wo immer möglich deren gute und zuverlässigen Messuhren ein.
Die Angaben über Mitutoyo Produkte sind ohne Gewähr. Im Zweifel bitte direkt bei Mitotoyo nachfragen oder direkt an der Messuhr oder am Messschieber nachsehen: Ein Digimatic Datenausgang kann an den 5 Goldkontaktflächen unter der Abdeckung oder an der Goldkontaktfläche am Boden der Buchse (Coolant Proof Modelle) erkannt werden.

Kontakt

rAAAreware GmbH – Steigerweg 49 – D-69115 Heidelberg – tel 06221 136 110 – e-mail: info@raaareware.de

Agile Entwicklung und Fertigung für die Industrie

Wir betreiben Produktentwicklung und Fertigung als kleines Unternehmen. Dies ist in der heutigen Zeit vielleicht exotisch, denn klassische Produktentwicklung bedeutet einen großen Zeitaufwand und hohe Entwicklungskosten für die erforderlichen Prozesse und Komponenten.

Keine Zeit und kein Geld ist auf der anderen Seite die Situation, in welcher sich gerade Startups zu Beginn ihrer Laufbahn befinden.

Wir sind zwar durch unsere langjährige Erfahrung und unseren Erfolg in der industriellen Softwareentwicklung finanziell und personell gut ausgestattet – trotzdem gelten die oben genannten Punkte auch für uns.

Kurzum: Wir haben aus der Not eine Tugend gemacht und sind nun mit unseren Produkten und unserem Vorgehen zufrieden. Was noch wichtiger ist: Unsere Kunden sind es auch.

Doch betrachten wir unser Vorgehen etwas näher und im Detail:
Für unsere industriellen IoT Produkte im Bereich der Messtechnik mit IIoT-Sensoren und IIoT-Aktoren benötigen wir die Komponenten [Gehäuse], die [Elektronik] und die [Software].
Alle diese Grundkomponenten zu Entwickeln ist entweder nur bei sehr großen Stückzahlen oder bei einem sehr hohen Produktpreis wirtschaftlich.
Deshalb versucht eine Produktionsfirma für industrielle Komponenten diese 2 Parameter zu optimieren:

  • Fertigung möglichst hoher Stückzahlen eines einzelnen Produktes
  • Möglichst lange Produktzyklen

Genau dies machen wir anders. Deshalb sehen unsere Produkte im direkten Vergleich vielleicht etwas anders aus als die unserer Mitbewerber. Hier erklären wir warum wir einiges anders machen:

Messuhr Konstruktionszeichnung in 3d-Ansicht

Agile Produktentwicklung

Wir kommen aus der Softwareentwicklung.
Hier war es vor langer Zeit auch so, dass die Produktzyklen sehr lange sind.
Eine Software war eine sehr langfristige Investition.
Entsprechend war ein ähnliches klassisches Vorgehen angebracht.
Bei der Entwicklung von Software hat hier in den letzten Jahren ein Umdenken stattgefunden.
Das klassische Wasserfallmodell findet nicht mehr überall Anwendung.
In vielen Bereichen wird Software als ein dynamischer und flexibler Prozess verstanden.
Die agile Softwareentwicklung hat sich hier zumindest für einige Bereiche durchgesetzt – sicherlich auch mit dem einen oder anderen Nachteil.
Unter Betrachtung der sich daraus jedoch auch ergebenden Vorteile haben wir unsere Produktentwicklung auf eine agile Entwicklung abgestimmt.

Zeigt den Kreislauf einer agilen Entwicklung mit den einzelnen Entwicklungsschritten

Prinzip einer agilen Vorgehensweise

Dies bedeutet im auf ein Produkt übertragenen konkreten Fall:

  • Alle Gehäuse werden auf 3D Druckern gedruckt.
    Der Preis für ein Gehäuse vervielfacht sich dadurch zwar vom Cent-Bereich auf vielleicht einen Euro.
    Es liefert jedoch dafür den Vorteil, jederzeit Verbesserungen und Weiterentwicklungen am Gehäuse und Aufbau vornehmen zu können.
    Weiter können spezifische Kundenwünsche unkompliziert und schnell umgesetzt werden.
  • Als Elektronik-Bauteile werden nur Standard-Komponenten eingesetzt.
    Dies stellt auch bei kleinen Losgrößen und dynamischer Entwicklung sicher, dass eine lange und sichere Ersatzteilversorgung gewährleistet ist.

  • Die Software der Komponenten wird konsequent agil umgesetzt.
    Es werden wo möglich Standards mit Standard-Bibliotheken eingesetzt.
    Die Build-Prozesse sind automatisiert und Toolchains erstellen einfach und schnell neue Versionsstände.
    Neue Versionen können auf Wunsch und bei Bedarf einfach direkt aus der Ferne installiert werden.

Über alle Bereiche hinweg wird eine Dokumentation und Versionierung in hoher Präzision umgesetzt.
Dadurch ist es auch bei vielen Produktvarianten sicher möglich, jeden einzelnen Versionsstand zu reproduzieren und nachvollziehen zu können.

Dies alles vereint bedeutet ein leistungsfähiges Produkt in kleinen Stückzahlen zu vermarkten und mit kurzen Produktzyklen Innovationen sehr schnell in die Produktion einfliesen zu lassen.

Weiter lassen sich individuelle Kundenwünsche sehr einfach und zielgerichtet realisieren.
Dies beginnt bei Farbe und Material für das Produktgehäuse und endet bei eigenen Funktionen oder Schnittstellen in der Software.

Unsere Grundsätze

Unsere Produktentwicklung folgt weiteren wichtigen Grundsätzen um ein zuverlässiges und langlebiges Produkt für die Messtechnik zu erstellen.

Einfachheit

So einfach wie möglich. So komplex wie nötig.
Wir erleben es häufig in Projekten, dass Dinge unnötig kompliziert gemacht werden.
Dies versuchen wir mit unseren Entwicklungen zu vermeiden.

Modularität

Eine Veringerung der Komplexität führt unweigerlich zu einer Modularisierung.
Komplexe Themen werden so lange in kleinere Module geteilt, bis jedes für sich einfach zu lösen ist.
Dies führt zu einer einfachere Realisierung und dadurch zu geringeren Kosten.
So einfach ist es.
Durch die Modularität wird das gesamte Implementationsrisiko auf eigene Unterbereiche aufgeteilt.

Eigenständigkeit / Autark

Durch die Eigenständigkeit, also die Vermeidung von unnötigen Abhängigkeiten, wird das gesamte Ausfallrisiko verringert.
Vor allem negative (Seiten-)effekte durch abhängige Module dürfen das eigentliche Modul nicht beeinträchtigen.

Wiederverwendbarkeit / Reusability

Unabhängige und eigenständige Module ermöglichen eine hohe Wiederverwendung einzelner Elemente.
Auch dies spart Kosten und ermöglicht eine preisgünstige Produktentwicklung.

Testbarkeit / Validierbarkeit

Eine dokumentierte Test- und Validierbarkeit eines Systems ist inzwischen Standard und ermöglicht eine kontinuierliche und hohe Gesamtqualität des Produkts.
Modularität ermöglicht deutlich einfachere Modultests.
Gerade bei schnellen Produktzyklen sind automatisierte Tests sinnvoll und notwendig.

Simulationfähigkeit

Eine gute Simulationsfähigkeit der Produktumgebung ist zwingend für Leistungstests, Skalierungstests und Langzeittests.
Deshalb wird die Simulation von Anwendungsfällen von Anfang an mit eingeplant und umgesetzt. Bei Dienstleistungen für die Industrie ist es selten möglich eine reale Produktionsanlage in einem Entwicklungsbereich umzusetzen. Um trotzdem jede Komponente einer Anlage testen zu können ist es unabdingbar, die anderen Komponenten der Anlage soweit möglich zu simulieren.

Offenheit

Die Mindestanforderung einer Produktentwicklung sind offene Schnittstellen.
Diese Offenheit bietet Flexibilität in der Anwendung unserer Produkte und bietet unseren Kunden eine hohe Investitionssicherheit. Wir sind Freunde von Open-Source und bevorzugen Tools und Systeme, welche dem Open-Source Grundsatz folgen. Wir vermeiden die Abhängigkeit von bestimmten Herstellern oder IT-Systemen um jederzeit flexibel auf industrielle Anforderungen reagieren zu können.

Messgeräte direkt mit einem WLAN zu verbinden ist Industrie 4.0.

In der industriellen Umgebung sind verschiedene Netzwerke oft in Sub-Netzwerke getrennt.  Dies dient der Sicherheit, der besseren Wartbarkeit und Übersichtlichkeit des Netzwerks. Die Verbindungen der Netzwerke untereinander werden dann über Router, Firewalls und Gateways geregelt.

Es gibt hier eine reihe angebotener Produkte, welche die Aufgaben erfüllen. Am Einfachsten sind Geräte aus dem Home- oder Consumer-Bereich: Diese Geräte sind sehr günstig und erfüllen die Aufgabe oft zufriedenstellend. Als Nachteile dieser Produktgruppe sind jedoch zu sehen, dass oft

  • die Verarbeitung nur mittelmäßig ist.
  • die Produktzyklen sehr schnell sind und keine Ersatzteillieferung gewährleistet ist.
  • die Montagemöglichkeiten nicht für industriellen Einsatz geeignet sind.
  • keine zufriedenstellende Remote-Administration möglich ist.

Weiter gibt es dann Router für den industriellen Einsatz. Diese sind sicherlich brauchbar. Der Nachteil hier ist, dass für diese Geräte gerne Preise abgerufen werden, welche den Anwender nicht unbedingt glücklich machen. Beispiele hierfür sind die Industrial Router Produkte von Phoenix Contact: Router – FL MGUARD 1102 – 1153079, Router – Phoenix FL MGUARD 1105 – 1153078 oder TC ROUTER 3002T-4G.

Doch auch bei diesen Geräten besteht der Nachteil, dass es geschlossene Systeme sind: Der Anwender hat nicht die vollständige Kontrolle dessen, was auf dem Gerät vor sich geht. Er ist vom Hersteller abhängig. Änderungen oder Erweiterungen an der Software sind nicht vorgesehen.

Doch es gibt Alternativen welche auf der Hand liegen: Linux als freies System bietet nahezu unbegrenzte Möglichkeiten dessen, was auf einem Rechner oder Router passiert. Zudem gibt es inzwischen eine große Anzahl an Hardware-Implementierungen, welche für Linux geeignet sind.

Eine sehr populäre und sehr langlebige Plattform für Linux Hardware ist Raspberry. Es liegt also fast nichts näher, als diese Plattform für einen industriellen Router zu nutzen.

Entsprechend haben wir einen auf Raspberry basierenden Industrierechner realisiert um unsere Messgerät-Module für WLAN mit dem Internet oder dem Firmennetzwerk über einen Router oder eine Firewall zu verbinden.

Ein „normaler“ Raspberry hat entweder eine LAN oder eine W-LAN Schnittstelle. Sind mehrere Netzwerke anzubinden kommt dieser günstige und bewährte Rechner jedoch schnell an seine Grenzen.

Unser Industrierechner bietet hier mehr: Mindestens 2 LAN Schnittstellen und oder LAN und WLAN Schnittstelle ermöglichen es, Netzwerke einfach und sicher miteinander zu verbinden. Zusätzlich kann auf dem Rechner auch gleich der MQTT Broker betrieben werden.

Industrierechner auf Raspberry Basis mit mehr als 2 Netzwerkschnittstellen

Zum Betrieb von IIoT Devices eignen sich Raspberry Pi Computer für verschiedene kleine und große Aufgaben.

Zum Beispiel um eine Netzwerkbrücke bereitzustellen oder um einen kleinen MQTT Server oder auch anderen Server zu betreiben.

Durch den Einsatz des Linux Betriebssystem stehen eine große Anzahl an Programmen und Funktionen bereit, um dieses Gerät mit Software zu bestücken.
Die OpenSource Philosophie stellt sicher, dass Investitionen in Software und Hardware langfristig verfügbar bleiben.

Prinzipiell lässt sich ein Raspberry PI gut erweitern. Ein gewisser Nachteil ist, dass zunächst nur die Raspberry Platine einheitlich ist. Die Ein- und Anbauteile sind relativ spezifisch. Wenn diese an einem Standard Raspberry Pi Gehäuse extern angebracht werden entsteht schnell eine wilde Landschaft von Modulen, welche mehr oder weniger lose mit dem Raspberry verbunden sind.

Um diese Erweiterungen industrietauglich zu machen haben wir alle für unsere Anforderungen benötigten Module in ein Gehäuse gepackt.

Das Gehäuse kann entweder frei positioniert, verschraubt oder auf eine 35mm DIN Hutschiene montiert werden.

Das Innenleben ist modular und kann dynamisch für die entsprechende Anforderung erweitert werden.

Möglich sind:

  • bis zu 7 USB Schnittstellen.
  • bis zu 3 Netzwerkkarten
  • Externer WLAN-Accesspoint (WLAN SMA oder WLAN RP-SMA Anschluß).
  • serielle Schnittstellen (RS232/RS485/RS422)
  • I²C oder SPI Schnittstellen
  • Serielles Terminal (RX/TX-Connector)
  • HDMI Monitor Anschluss

Ein Alleinstellungsmerkmal dieses Einplatinencomputers auf Raspberry Pi Basis ist die Verlötung aller relevanten Module. Durch den Verzicht auf  Steckverbindungen fallen schlechte Verbindungen als Ausfallursache des Moduls aus. Wir halten unser entwickeltes Modul daher für sehr robust und sehr ausfallsicher.

Auch für diesen Rechner verfolgen wir unsere agile Entwicklung und agile Fertigungsstrategie: Das Gehäuse ist konsequent in 3D gedruckt und es kommen nur Standardbauteile zum Einsatz.

Mögliche Funktionen:

  • Industrial Router / IP forwarding
  • Industrial Firewall (ufw, iptables)
  • Network Bridge
  • DNS Server
  • DHCP Server
  • Proxy Gateway
  • MQTT Broker
  • M2M Interface
  • Webserver

Es können hier nur einige exemplarische Funktionen genannt werden. Es ist alles möglich, was Linux auf dieser Hardware bietet.

Das Technische Handbuch und die Bedienungsanleitung der Raspberry Bridge kann hier heruntergeladen werden.

Online-Shop

Sie können dieses Produkt direkt in unserem Online-Shop kaufen:

Gehe zum Shop

Rechtliches

Raspberry Pi ist ein eingetragenes Warenzeichen der RASPBERRY PI FOUNDATION. Wir stehen in keiner Verbindung zu dieser Stiftung – setzen aber sehr gerne die von ihnen entwickelten Computer ein.

Kontakt

rAAAreware GmbH – Steigerweg 49 – D-69115 Heidelberg – tel 06221 136110 – e-mail: info@raaareware.de